Foods, Vol. 15, Pages 728: Non-Destructive Assessment of Beef Freshness Using Visible and Near-Infrared Spectroscopy with Interpretable Machine Learning

Fuente: Foods - Revista científica (MDPI)
Foods, Vol. 15, Pages 728: Non-Destructive Assessment of Beef Freshness Using Visible and Near-Infrared Spectroscopy with Interpretable Machine Learning
Foods doi: 10.3390/foods15040728
Authors:
Ruoxin Chen
Wei Ning
Xufen Xie
Jingran Bi
Gongliang Zhang
Hongman Hou

Beef freshness is a critical indicator of meat quality and safety, and its rapid, non-destructive detection is of significant importance for ensuring consumer health and enhancing quality control throughout the meat industry chain. This study developed a novel methodology for non-destructive beef freshness assessment using visible and near-infrared (Vis-NIR) spectroscopy combined with machine learning, explainable artificial intelligence (xAI) techniques, and the SHapley Additive exPlanations (SHAP) framework. An improved hybrid heuristic method, particle swarm optimization–genetic algorithm (PSOGA), was used for feature selection, optimizing the wavelength subset for predicting beef quality indicators, including total volatile basic nitrogen (TVB-N) and color parameters (L*, a*, and b*). The eXtreme Gradient Boosting (XGBoost) was employed for regression modeling, and the results showed that PSOGA significantly outperforms traditional methods, with the PSOGA-XGBoost model achieving a satisfactory prediction accuracy (R2p values of 0.9504 for TVB-N, 0.9540 for L*, 0.8939 for a*, and 0.9416 for b*). The SHAP framework identified the key wavelengths as 1236 nm and 1316 nm for TVB-N, 728 nm for L*, 576 nm for a*, and 604 nm for b*, providing valuable insights into the determination of key wavelengths and enhancing the interpretability of the model. The results demonstrated the effectiveness of PSOGA and SHAP, providing a promising analytical method for monitoring beef freshness.