Spatiotemporal distribution and dynamic evolution of grain productivity efficiency in the Yellow River Basin of China

Fecha de publicación: 01/05/2024
Fuente: Journal of Sustainable Development
Abstract
With contraction of agricultural resources and deterioration of ecological environment, grain production has faced a series challenges. Therefore, figuring out grain production efficiency (GPE) has significance to green and sustainable development of grain production. We constructed the global epsilon-based measure (EBM) model to estimate GPE of 100 prefecture-level cities in the Yellow River Basin (YRB) from 2000 to 2020. Further, we studied dynamic evolution of GPE in the YRB by utilizing the dynamic distribution method. The following results were revealed. First, aggregate level of GPE in the YRB was low, with an average value of 0.429, but showed a growing tendency in general. Second, the GPE in downstream was higher than that in upstream and midstream. The GPE in each region showed an increasing trend with fluctuation over time. Third, the GPE in the YRB tended to converge to a medium–high level. Compared with the high-efficiency cities, the distribution mobility was strong cities with high GPE possessed strong distribution mobility. By comparison, the low-efficiency cities had the phenomenon of “poverty trap”, the vicious circle of low-level GPE was difficult to break. Under the background of promoting agricultural green development comprehensively, constructing GPE model considering non-point source pollution has important and practical meaning for solving problem of current agricultural pollution and guaranteeing food security. Meanwhile, analysis of spatial distribution, trends of distribution, and evolution of GPE can also provide regional experience reference for government to ensure coordinated development of grain production and ecological environment.