Molecules, Vol. 29, Pages 5443: Valorization of Bioactive Compounds from Lingonberry Pomace and Grape Pomace with Antidiabetic Potential

Fecha de publicación: 18/11/2024
Fuente: Molecules - Revista científica (MDPI)
Molecules, Vol. 29, Pages 5443: Valorization of Bioactive Compounds from Lingonberry Pomace and Grape Pomace with Antidiabetic Potential
Molecules doi: 10.3390/molecules29225443
Authors:
Elena Neagu
Gabriela Paun
Camelia Albu
Gabriel Lucian Radu

In recent years, increased attention has been paid to the recovery of bioactive compounds from waste and by-products resulting from the agro-industrial sector and their valorization into new products, which can be used in the health, food, or agricultural industry, as innovative and sustainable approaches to waste management. In this work, two of these by-products resulting from the fruit-processing industry were used for the recovery of bioactive compounds (polyphenols), namely lingonberry pomace (Vaccinium vitis-idaea) and grape pomace (Vitis vinifera). Two green extraction techniques were employed to obtain hydroalcoholic extracts (solvent: 50% EtOH, 10% mass): ultrasound-assisted extraction (UAE) and accelerated solvent extraction (ASE). The extracts were subjected to micro- and ultrafiltration processes, and further analyzed to determine the bioactive compound content through spectrophotometric (UV-Vis) and chromatographic (HPLC-PDA) methods. Additionally, the extracts exhibited significant enzyme inhibition, particularly against α-amylase and β-glucosidase, suggesting potential anti-diabetic properties. The extracts characteristics, polyphenolic content, antioxidant capacity and enzyme inhibitory ability, were statistically compared, and significant differences were found between the two extraction methods. The grape pomace concentrated extracts showed a pronounced inhibitory activity on both analyzed enzymes compared to the lingonberry pomace concentrated extracts, closer to the standard used; e.g., IC50 α-amylase = 0.30 ± 0.01 µg/mL (IC50 acarbose = 0.3 ± 0.01 µg/mL), IC50 α-glucosidase = 0.60 ± 0.01 µg/mL (IC50 acarbose = 0.57 ± 0.02 µg/mL). These findings highlight the potential of agro-industrial residues as bioactive compound resources, with their valorization through application in food, nutraceutical, or pharmaceutical industries therefore contributing to the sustainable development and promotion of circular economy principles with the recovery of valuable inputs from plant by-products.