Fuente:
Textiles (MDPI)
Textiles, Vol. 6, Pages 12: Adsorption Performance of Cu-Impregnated Carbon Derived from Waste Cotton Textiles: Single and Binary Systems with Methylene Blue and Pb(II)
Textiles doi: 10.3390/textiles6010012
Authors:
Xingjie Zhao
Xiner Ye
Lun Zhou
Si Chen
Waste textiles may contain heavy metals, which can originate from dyes, mordants, or other chemical treatments used during manufacturing. To explore the impact of heavy metals on the adsorption properties of activated carbon derived from discarded textiles through pyrolysis and to mitigate heavy metal migration, this study investigated the adsorption behavior of copper-impregnated pyrolytic carbon toward typical pollutants—methylene blue and lead—in simulated dyeing wastewater. Aqueous copper nitrate was used to impregnate the waste pure cotton textiles (WPCTs) to introduce copper species as precursors for creating additional active sites. The study systematically examined adsorption mechanisms, single and binary adsorption systems, adsorption kinetics, adsorption isotherms, adsorption thermodynamics, and the influence of pH. Key findings and conclusions are as follows: Under optimal conditions, the copper-containing biochar (Cu-BC) demonstrated maximum adsorption capacities of 36.70 ± 1.54 mg/g for Pb(II) and 104.93 ± 8.71 mg/g for methylene blue. In a binary adsorption system, when the contaminant concentration reached 80 mg/L, the adsorption capacity of Cu-BC for Pb(II) was significantly enhanced, with the adsorption amount increasing by over 26%. However, when the Pb(II) concentration reached 40 mg/L, it inhibited the adsorption of contaminants, reducing the adsorption amount by 20%. SEM, XRD, Cu LMM, FTIR and XPS result analysis proves that the adsorption mechanism of methylene blue involves π–π interactions, hydrogen bonding, electrostatic interactions, and pore filling. For Pb(II) ions, the adsorption likely occurs via electrostatic interactions, complexation with functional groups, and pore filling. This study supplements the research content on the copper adsorption mechanism supported by biochar for heavy metal adsorption research and broadens the application scope of biochar in the field of heavy metal adsorption.