Textiles, Vol. 5, Pages 65: Preparation and Performance Study of Bacterial Nanocellulose Yarns

Fuente: Textiles (MDPI)
Textiles, Vol. 5, Pages 65: Preparation and Performance Study of Bacterial Nanocellulose Yarns
Textiles doi: 10.3390/textiles5040065
Authors:
Liangyu Zhang
Yuanyuan Zhang
Xiaoling Wang
Lisha Zheng
Huanjian Yu
Yuanming Zhang
Shaoyang Liu
Wei Jiang

This study investigated the preparation of bacterial nanocellulose yarn, a high-strength and high-modulus cellulose-based textile material. Compared with the previously used wet spinning and electrospinning methods, the film-cutting, drawing and twisting treatment method in this paper retains the natural structure of BNC. This can greatly transfer the high performance of BNC nanofibers to BNC yarns, making the mechanical properties of the prepared yarn much higher than those of the BNC yarns prepared by the above two methods. It was produced through a film-cutting and twisting process utilizing bacterial nanocellulose as the primary component. The effects of drafting and twisting on the characteristics and properties of the yarn were systematically examined. Comparative analyses were conducted between the bacterial nanocellulose yarn and conventional cotton yarn of equivalent fineness and twist in terms of appearance, tensile properties, frictional behavior, and bending resistance. Optimal tensile mechanical properties of the bacterial nanocellulose yarn were achieved at 1% elongation and a twist number of 160 r/20 cm, resulting in a breaking strength of 751.56 MPa and an elongation at break of 11.56%, surpassing those of cotton yarn of similar specifications. The spinnability assessment revealed a smooth surface for the bacterial nanocellulose yarn, characterized by low friction coefficient, robust bending resistance with a bending modulus of 718.76 GPa. These findings offer valuable empirical data and theoretical insights to guide the subsequent textile processing and utilization of bacterial nanocellulose yarn.