Textiles, Vol. 5, Pages 5: Development of Thermally Insulating Nonwovens from Milkweed Fibers Using an Air-Laid Spike Process

Fuente: Textiles (MDPI)
Textiles, Vol. 5, Pages 5: Development of Thermally Insulating Nonwovens from Milkweed Fibers Using an Air-Laid Spike Process
Textiles doi: 10.3390/textiles5010005
Authors:
Deborah Lupescu
Mathieu Robert
Simon Sanchez-Diaz
Said Elkoun

Milkweed (MW) fiber is a natural fiber that provides tremendous thermal insulation properties due to its lightweight hollow structure. This study aimed to investigate the effect of milkweed fiber as a thermal fiber in nonwovens. Milkweed fibers were blended with a low-melt fiber consisting of a polyethylene terephthalate core, a polyolefin sheath (LM 2.2), and polylactic acid (PLA) fiber. Nonwovens with different fiber contents were manufactured using an air-laid Spike process to determine their effect on thermal and mechanical properties. Then, the nonwovens were compared with Thinsulate® and Primaloft®, two commercially synthetic insulation products. Structural properties, including mass per unit area, thickness, and porosity and thermal properties were studied. Furthermore, compression and short-term compression recovery were also evaluated. The results revealed that milkweed-based nonwovens that contained 50 wt% or 70 wt% of milkweed presented a lower thermal conductivity than synthetic nonwovens. Milkweed nonwovens of the same thickness provided identical thermal resistance as Thinsulate® and Primaloft. Sample 3, composed of 50 wt% MW, 20 wt% LM 2.2, and 30 wt% PLA, demonstrated the same thermal insulation as Thinsulate® with a weight three times lighter. Milkweed nonwovens presented higher moisture regain values than Thinsulate® and Primaloft®, without affecting thermal conductivity.