Fuente:
Textiles (MDPI)
Textiles, Vol. 5, Pages 20: Lyocell-Based Nonwovens: Mechanical Performance and Biodegradation Analysis
Textiles doi: 10.3390/textiles5020020
Authors:
Lúcia Rodrigues
João Medeiros
Rita Marques
Carla J. Silva
The nonwoven industry is undergoing significant changes, driven by rapid growth and sustainability concerns, with a growing need to shift from fossil-based polymers like polyester (PES) and polypropylene (PP) fibres to biodegradable, fossil-free materials. Compared to other cellulose-based fibres, lyocell (LY) is a promising solution due to its good mechanical performance and lower environmental impact. Additionally, cellulose acetate (CA) fibres, known for their thermoplastic and biodegradable properties, can act as a binder, offering another promising alternative to fossil-based fibres. This study explores the use of 100% LY fibres, alone and in blends with CA and recycled polyester (rPES) fibres, in the development of needle-punched nonwovens and assesses the mechanical benefits of adding a thermal bonding step. Among the blends, rPES-based nonwovens with thermal bonding showed the best results. 100% LY exhibited the best mechanical performance among needle-punched nonwovens, while rPES-based blends outperformed the others. Biodegradability and toxicity studies were also performed. 100% LY nonwovens fully biodegraded within 55 days, and 100% CA and 100% rPES showed no biodegradation. The findings revealed that the thermal process did not affect the disintegration level and, the germination of Brassica oleracea was not affected by soils in which the samples were buried for 75 days.