Biomolecules, Vol. 16, Pages 243: Tyrosine–Peptide Analog Modulates Extracellular Vesicles miRNAs Cargo from Mesenchymal Stem/Stromal and Cancer Cells to Drive Immunoregeneration and Tumor Suppression

Fuente: Biomolecules - Revista científica (MDPI)
Biomolecules, Vol. 16, Pages 243: Tyrosine–Peptide Analog Modulates Extracellular Vesicles miRNAs Cargo from Mesenchymal Stem/Stromal and Cancer Cells to Drive Immunoregeneration and Tumor Suppression
Biomolecules doi: 10.3390/biom16020243
Authors:
Michelle B. R. G. Ley
Karina Galoian
Daniel A. Martinez
Arianna Patel
Reanna Thomas
Tressa R. Parker
Lee Friedman
Allie L. Andryski
Francis J. Hornicek
Thomas M. Best
Dimitrios Kouroupis

Soft tissue sarcoma remains challenging to treat due to its heterogeneity, stemness-associated survival programs, and resistance to conventional therapies. Extracellular vesicles (EVs) mediate tumor–stroma communication, yet how stemness-targeted therapies reshape EVs-associated miRNAs networks remains unclear. This study profiled EVs miRNAs cargo from infrapatellar fat pad mesenchymal stem/stromal cells (IFP-MSCs) and sarcoma cells (SCs) under basal conditions and following treatment with a synthetic tyrosine peptide analog (TPA). EVs were isolated, characterized, and subjected to miRNAs profiling and pathway enrichment analyses. TPA induced ≥2-fold regulation of 182 miRNAs, including 49 upregulated and 24 downregulated in IFP-MSC-EVs and 86 upregulated and 23 downregulated in SC-EVs. A conserved core of 149 miRNAs (67.1%) was shared across all EVs groups. Abundant species included miR-3960 and miR-21-5p, while TPA reduced tumor-associated miRNAs such as miR-1246 (~10-fold decrease in IFP-MSC-EVs). Pathway enrichment revealed consistent targeting of cancer, MAPK, Wnt, TGF-β, and immune signaling pathways, with modest increases in mapped gene coverage following TPA treatment. In silico analysis identified distinct EVs miRNA–gene interaction profiles, with VEGFA emerging as a recurrent predicted target. These results demonstrate that stemness-targeted modulation quantitatively reprograms EVs miRNA cargo in a cell-type-dependent manner, reshaping vesicle-mediated signaling networks in sarcoma.