Fuente:
Biomolecules - Revista científica (MDPI)
Biomolecules, Vol. 16, Pages 147: Mesenchymal Stem/Stromal Cells: A Review for Its Use After Allogeneic Hematopoietic Stem Cell Transplantation
Biomolecules doi: 10.3390/biom16010147
Authors:
Ali Durdu
Ugur Hatipoglu
Hakan Eminoglu
Turgay Ulas
Mehmet Sinan Dal
Fevzi Altuntas
Mesenchymal stem/stromal cells (MSCs) exhibit broad differentiation capability and strong immunoregulatory potential mediated through intercellular communication and the release of diverse paracrine mediators. They represent a promising but still investigational therapeutic approach for managing complications associated with allogeneic hematopoietic stem cell transplantation (allo-HSCT). This review provides an updated synthesis of MSC biology, their bidirectional interaction with immune cells, and their functional contribution to the hematopoietic niche. It also evaluates current clinical evidence regarding the therapeutic roles of MSCs and MSC-derived extracellular vesicles (EVs) in acute and chronic graft-versus-host disease (aGVHD/cGVHD), as well as in poor graft function. Mechanistic insights encompass macrophage polarization toward an anti-inflammatory phenotype, inhibition of dendritic cell maturation, enhancement of regulatory T-cell expansion, and modulation of cytokine signaling pathways. Within the bone marrow milieu, MSCs contribute to stromal restoration and angiogenic repair. Recent phase II/III trials in steroid-refractory (SR)-aGVHD have demonstrated overall response rates ranging from 48 to 71%. Efficacy appears particularly enhanced in pediatric patients and with early MSC administration. Across studies, MSC therapy shows a favorable safety profile; however, heterogeneity in response and inconsistent survival outcomes remain notable limitations. For poor graft function, limited prospective studies indicate hematopoietic recovery following third-party MSC infusions, and combination approaches such as co-administration with thrombopoietin receptor agonists are under investigation. MSC-derived EVs emulate many immunomodulatory effects of their parental cells with a potentially safer profile, though clinical validation remains in its infancy. MSC-oriented interventions hold substantial biological and therapeutic promise, offering a favorable safety margin; however, clinical translation is hindered by product variability, suboptimal engraftment and persistence, and inconsistent efficacy across studies. Future directions should emphasize standardized manufacturing and potency assays, biomarker-driven patient and timing selection, optimized conditioning and dosing strategies, and the systematic appraisal of EV-based or genetically modified MSC products through controlled trials.