Fuente:
Microorganisms - Revista científica (MDPI)
Microorganisms, Vol. 13, Pages 2846: Diversity of CRISPR-Cas Systems Identified in Urological Escherichia coli Strains
Microorganisms doi: 10.3390/microorganisms13122846
Authors:
Pavel V. Slukin
Mikhail V. Fursov
Daniil V. Volkov
Angelika A. Sizova
Konstantin V. Detushev
Ivan A. Dyatlov
Nadezhda K. Fursova
Type I-E and I-F CRISPR-Cas systems were identified in 237 E. coli strains isolated from patients with urinary tract infections (UTIs) between 2004 and 2019. The strains were classified into nine distinct groups (I–IX) based on the presence or absence of cas genes and repeat regions (RRs). Within the type I-E systems, two sequence variants were identified, distinguished by polymorphisms in the casB, cas3, cas7, cas5, and cas6 genes. The direct repeats (DRs) also differed, with I-E-associated RRs ranging from 26 to 32 bp and I-F-associated RRs consistently being 28 bp. We identified 762 unique spacers (29–35 bp in length) across the strain collection, while the number of spacers per strain varied from 1 to 47, and potential DNA targets were determined for 65 spacers, targeting 38 bacteriophage genomes, 19 plasmids, and 8 cas genes of the I-F type CRISPR-Cas system. Multilocus sequence typing (MLST) revealed 68 sequence types and 24 clonal complexes (CCs), with the most prevalent being ST131, CC10, CC69, CC405, CC14, CC38, CC73, and CC648. Significant correlations were observed between specific phylogroups/CCs, the type of CRISPR-Cas system present, and distinct profiles of virulence and antibiotic resistance genes.