Fuente:
Microorganisms - Revista científica (MDPI)
Microorganisms, Vol. 13, Pages 2717: Genomic and Transcriptomic Characterization of Umatilla Virus Isolated and Identified from Mosquitoes in Ningxia, China
Microorganisms doi: 10.3390/microorganisms13122717
Authors:
Kun Han
Yuhong Yang
Long Wang
Liqin Yu
Ruichen Wang
Xiaoyu Gu
Fan Li
Qikai Yin
Shihong Fu
Kai Nie
Qianqian Cui
Songtao Xu
Huanyu Wang
During the 2023 surveillance of mosquito-borne viruses in Ningxia Hui Autonomous Region, a strain of Umatilla virus (UMAV) was isolated from a pool of Culex pipiens pallens (NX23166) collected in Xiji County and cultured in C6/36 cells. Electron microscopy revealed that NX23166-infected mosquito cells showed approximately 70-nm virus particles, typical of the genus Orbivirus. Through next-generation sequencing, 10 double-stranded RNA (dsRNA) segments of the virus were obtained. Phylogenetic and homology analyses based on these sequences revealed that this strain was most closely related to the first Chinese isolate from Yunnan in 2013 (DH13M98) and an Australian isolate from 2015 (M4941_15). However, the VP3 protein of this strain showed the closest evolutionary relationship to a German isolate from 2019 (ED-I-205-19), with an amino acid sequence identity of 94.00%. In contrast, the identity of the VP3 protein to that of other strains ranged only from 47.38% to 51.49%, suggesting that these two strains may belong to the same serotype. Nevertheless, this hypothesis needs to be further verified by a serum neutralization test. Furthermore, transcriptome sequencing analysis showed that infection with the Ningxia isolate of UMAV induced significant temporal transcriptomic reprogramming in C6/36 cells. This reprogramming was characterized by early activation of innate immune responses such as the Toll signaling pathway and autophagy, followed by significant suppression of metabolic pathways, including oxidative phosphorylation in the mid to late stages of infection, demonstrating a molecular phenotype of coordinated immune activation and metabolic suppression. These results provide new insights into the genetic diversity and geographic distribution of the species UMAV.