Microorganisms, Vol. 13, Pages 2649: Biofilm as a Key Element in the Bacterial Pathogenesis of Forest Trees: A Review of Mechanisms and Ecological Implications

Fuente: Microorganisms - Revista científica (MDPI)
Microorganisms, Vol. 13, Pages 2649: Biofilm as a Key Element in the Bacterial Pathogenesis of Forest Trees: A Review of Mechanisms and Ecological Implications
Microorganisms doi: 10.3390/microorganisms13122649
Authors:
Miłosz Tkaczyk

Bacterial diseases of forest trees represent an increasing threat to ecosystem health and the sustainability and resilience of forest management, particularly under changing climate conditions. One of the key yet still insufficiently understood adaptive mechanisms of pathogens is biofilm formation—a structured community of bacterial cells embedded in a matrix of extracellular polymeric substances (EPS), which provides protection against stress factors, biocides, and the host’s defensive responses such as antimicrobial compounds or immune reactions. This paper presents a comprehensive review of current knowledge on the role of biofilms in the bacterial pathogenesis of forest trees, covering their formation mechanisms, molecular regulation, and ecological significance. Four key stages of biofilm development are discussed—adhesion, microcolony formation, EPS production, and dispersion—along with the roles of quorum sensing systems and c-di-GMP-based signaling in regulating these processes. Examples of major tree pathogens are presented, including Pseudomonas syringae, Erwinia amylovora, Xylella fastidiosa, the Brenneria–Gibbsiella complex associated with Acute Oak Decline (AOD) and Lonsdalea populi. Biofilm formation is shown to play a crucial role in the colonization of xylem, leaf surfaces, and tissues undergoing necrosis, where biofilms may stabilize decomposition zones and support saprophytic–pathogenic transitions. In the applied section, the concept of “biofilm-targeted control” is discussed, encompassing both chemical and biological strategies for disrupting biofilm structure—from quorum-sensing inhibitors and EPS-degrading enzymes to the use of biosurfactants and antagonistic microorganisms. The need for in situ research in forest environments and the adaptation of advanced imaging (CLSM, micro-CT) and metagenomic analyses to tree systems is also emphasized. This review concludes that biofilms are not merely a physiological form of bacterial organization but a complex adaptive system essential for the survival and virulence of pathogens in forest ecosystems. Understanding their functions is fundamental for developing sustainable and ecologically safe phytosanitary strategies for forest protection.