Fuente:
Foods - Revista científica (MDPI)
Foods, Vol. 14, Pages 4297: Nondestructive Detection of Polyphenol Oxidase Activity in Various Plum Cultivars Using Machine Learning and Vis/NIR Spectroscopy
Foods doi: 10.3390/foods14244297
Authors:
Meysam Latifi-Amoghin
Yousef Abbaspour-Gilandeh
Eduardo De La Cruz-Gámez
Mario Hernández-Hernández
José Luis Hernández-Hernández
Polyphenol oxidase (PPO) is the primary biochemical driver of browning and the subsequent decline of market quality in harvested fruit. In this work, a fully non-invasive analytical framework was built using Visible/Near-Infrared (VIS/NIR) spectroscopy coupled with chemometric modeling in order to estimate PPO activity in two commercially relevant plum cultivars (Khormaei and Khoni). A comprehensive comparative study was conducted utilizing multiple machine learning and linear regression techniques, including Support Vector Regression (SVR), Decision Tree (DT), and Partial Least Squares Regression (PLSR). After acquiring the full VIS/NIR spectra, a suite of metaheuristic feature selection strategies was applied to compress the spectral space to roughly 10–15 highly informative wavelengths. SVR, DT, and PLSR models were then trained and benchmarked using (a) the complete spectral domain and (b) the reduced wavelength subsets. The results consistently demonstrated that non-linear models (DT and SVR) significantly outperformed the linear PLSR method, confirming the inherent complexity and non-linearity of the relationship between the spectra and PPO activity. Across all tests, DT consistently produced the strongest generalization. Under full spectra inputs, DT reached RPD values of 4.93 for Khormaei and 5.41 for Khoni. Even more importantly, the wavelength-reduced configuration further enhanced performance while substantially lowering computational cost, yielding RPDs of 3.32 (Khormaei) and 5.69 (Khoni). The results show that VIS/NIR combined with optimized key-wavelength DT modeling provides a robust, fast, and field-realistic route for quantifying PPO activity in plums without physical destruction of the product.