Molecules, Vol. 31, Pages 188: Enhancing Antioxidant and Flavor of Xuanwei Ham Bone Hydrolysates via Ultrasound and Microwave Pretreatment: A Backpropagation Artificial Neural Network Model Prediction

Fuente: Molecules - Revista científica (MDPI)
Molecules, Vol. 31, Pages 188: Enhancing Antioxidant and Flavor of Xuanwei Ham Bone Hydrolysates via Ultrasound and Microwave Pretreatment: A Backpropagation Artificial Neural Network Model Prediction
Molecules doi: 10.3390/molecules31010188
Authors:
Xin Chen
Xianchao Feng
Xingwei Wang
Nianwen Zhang
Yuxia Jin
Jianxin Cao
Xuejiao Wang
Chaofan Guo

This study aimed to produce the hydrolysates of Xuanwei ham bone using enzymatic hydrolysis assisted by microwave and ultrasound pretreatment. A back propagation artificial neural network (BP-ANN) model was utilized to predict the optimal conditions, which involved 15 W/g bone for 15 min of ultrasound pretreatment and 5 W/g bone for 30 min of microwave pretreatment, achieving the highest degree of hydrolysis (DH). The model predicted a DH of 27.69, closely aligning with the experimentally measured actual DH of 28.33. DPPH radical scavenging and TBARS demonstrated that hydrolysates prepared by ultrasound combined microwave pretreatment (UMH) exhibited the highest antioxidant activity and significantly inhibited lipid oxidation. GC-MS analysis revealed that the UMH showed removal of bitter volatile flavor compounds, such as o-Cresol and m-Cresol, the retention of aromatic volatile compounds, such as 2-pentylfuran, formation of new aromatic volatile compounds such as 3-methylbutanal, and the reduction in certain aldehyde and ketone compounds. Pearson correlation analysis elucidated that the reduction in aldehyde and ketone compounds was positively linked to the enhanced antioxidant capacity of UMH. The results obtained hold substantial significance for enhancing the added value of Xuanwei ham within the food industry.