Fuente:
Sustainability - Revista científica (MDPI)
Sustainability, Vol. 18, Pages 665: Occupational Risk Assessment in Irrigation and Drainage in the Lis Valley, Portugal: A Comparative Evaluation of the William T. Fine and INSHT/NTP 330 Simplified Method
Sustainability doi: 10.3390/su18020665
Authors:
Susana Ferreira
Tânia Filipe
Juan Manuel Sánchez
José Manuel Gonçalves
Rui Eugénio
Henrique Damásio
Ensuring the safe, efficient, and economically viable operation of irrigation and drainage infrastructures is essential for long-term system resilience. This field-based study presents a comparative evaluation of the semi-quantitative William T. Fine (WF) method and a simplified probability–consequence (SM) approach applied in the Lis Valley Irrigation and Drainage Association (Leiria, Portugal). Monthly on-site observations of routine maintenance and conservation activities were conducted between January 2023 and December 2024, covering eight main operation types and resulting in 87 distinct occupational risk scenarios (N = 87). The mean Hazard Risk Score (HRS) was 88.9 ± 51.1, corresponding predominantly to “Substantial” risk levels according to the William T. Fine classification (HRS = 70–200). Both methods consistently identified the highest-risk activities—tractor rollover, work at height, and boat-based removal of aquatic plants. Quantitative differences emerged for medium and chronic hazards; WF produced a wider dispersion of risk scores across tasks, while the SM aggregated most hazards into a limited number of intervention classes (74% classified as Intervention Level II and 26% as Level III). These differences reflect complementary methodological limitations; WF requires greater data input and expert judgment but offers finer prioritization, whereas SM enables rapid field application but tends to group ergonomic and low-intensity hazards when consequences are not immediately observable. Based on these findings, a combined assessment framework is proposed, integrating the discriminative capacity of WF with the operational simplicity of SM. Recommended mitigation measures include targeted personal protective equipment, task rotation, focused training, and technology-assisted monitoring to reduce worker exposure. The methodology is readily replicable for Water Users’ Associations with similar operational contexts and supports evidence-based decision-making for sustainable irrigation management. From a sustainability perspective, this integrated risk assessment framework supports safer working conditions, more efficient maintenance planning, and informed policy decisions for the long-term management of irrigation and drainage infrastructures.