Sustainability, Vol. 18, Pages 641: A Computational Sustainability Framework for Vegetation Degradation and Desertification Assessment in Arid Lands in Saudi Arabia

Fuente: Sustainability - Revista científica (MDPI)
Sustainability, Vol. 18, Pages 641: A Computational Sustainability Framework for Vegetation Degradation and Desertification Assessment in Arid Lands in Saudi Arabia
Sustainability doi: 10.3390/su18020641
Authors:
Afaf AlAmri
Majdah Alshehri
Ohoud Alharbi

Vegetation degradation in arid and semi-arid regions is intensifying due to rising temperatures, declining rainfall, soil exposure, and persistent human pressures. Drylands cover over 41% of the global land surface and support nearly two billion people, making their degradation a major environmental and socio-economic concern. However, many remote sensing and GIS-based assessment approaches remain fragmented and difficult to reproduce. This study proposes a Computational Sustainability Framework for vegetation degradation assessment that integrates multi-source satellite data, biophysical indicators, automated geospatial preprocessing, and the Analytical Hierarchy Process (AHP) within a transparent and reproducible workflow. The framework comprises four phases: data preprocessing, indicator extraction and normalization, AHP-based modeling, and spatial classification with qualitative validation. The framework was applied to the Al-Khunfah and Harrat al-Harrah Protected Areas in northern Saudi Arabia using multi-source datasets for the January–April 2023 period, including Sentinel-2, Landsat-8, CHIRPS precipitation, ESA-CCI land cover, FAO soil data, and SRTM DEM. High degradation zones were associated with low NDVI (<0.079), high BSI (>0.276), and elevated LST (>49 °C), whereas low degradation areas were concentrated near wadis and relatively more fertile soils. Overall, the proposed framework provides a scalable and interpretable tool for early-stage vegetation degradation screening in arid environments, supporting the prioritization of areas for ecological investigation and restoration planning.