Sustainability, Vol. 17, Pages 11238: Peat Partial Replacement: Life Cycle Assessment and Eco-Efficiency in Potted Ornamental Sage Cultivation

Fuente: Sustainability - Revista científica (MDPI)
Sustainability, Vol. 17, Pages 11238: Peat Partial Replacement: Life Cycle Assessment and Eco-Efficiency in Potted Ornamental Sage Cultivation
Sustainability doi: 10.3390/su172411238
Authors:
Anna Elisa Sdao
Barbara De Lucia
Annalisa De Boni
Giovanni Ottomano Palmisano
Rocco Roma

Peat, a vital component of horticultural growing media (GM), is recognized by the Intergovernmental Panel on Climate Change (IPCC) as a solid fossil fuel which significantly contributes to the depletion of fossil resources and greenhouse gas emissions. This study evaluated the partial replacement of peat with three locally available by-products—wood fiber (WF), coffee silverskin (CS), and brewers’ spent grain (BSG)—in the cultivation of potted ornamental sage through an integrated environmental–economic approach. Ten GM formulations were modeled, with peat substitutions ranging from 0 to 40% (v/v) across one hectare of greenhouse production (90,000 pots). Environmental impacts were assessed using the EPD 2018 method in SimaPro, while eco-efficiency was calculated as the ratio of the environmental impact costs resulting from the different energy consumptions (EUR) to related revenues (EUR). Results revealed only minor variations among impact categories when comparing the alternative growing media with the peat-based control (0PR), with the exception of the Abiotic Depletion of Fossil Fuels (ADff), which showed a consistent decrease at higher peat replacement levels. Treatments with 40% substitution performed best, particularly BSG40 and CS40, with the lowest eco-efficiency ratios (≈approximately 11.4%). WF40 also showed favorable outcomes (≈12.7%), confirming that a 20–40% peat replacement offers the optimal balance between environmental sustainability and economic viability. Overall, partial peat replacement using local by-products effectively reduces the consumption of fossil resources without significantly impacting other environmental indicators, promoting circularity and competitiveness in ornamental plant production.