Fuente:
Sustainability - Revista científica (MDPI)
Sustainability, Vol. 17, Pages 10671: Integrating Explicit Dam Release Prediction into Fluvial Forecasting Systems
Sustainability doi: 10.3390/su172310671
Authors:
José Pinho
Willian Weber de Melo
Reliable forecasts of dam releases are essential to anticipate downstream hydrological responses and to improve the operation of fluvial early warning systems. This study integrates an explicit release prediction module into a digital forecasting framework using the Lindoso–Touvedo hydropower cascade in northern Portugal as a case study. A data-driven approach couples short-term electricity price forecasts, obtained with a gated recurrent unit (GRU) neural network, with dam release forecasts generated by a Random Forest model and an LSTM model. The models (GRU and LSTM) were trained and validated on hourly data from November 2024 to April 2025 using a rolling 80/20 split. The GRU achieved R2 = 0.93 and RMSE = 3.7 EUR/MWh for price prediction, while the resulting performance metrics confirm the high short-term skill of the LSTM model, with MAE = 4.23 m3 s−1, RMSE = 9.96 m3 s−1, and R2 = 0.98. The surrogate Random Forest model reached R2 = 0.91 and RMSE = 47 m3/s for 1 h discharge forecasts. Comparison tests confirmed the statistical advantage of the AI approach over empirical rules. Integrating the release forecasts into the Delft FEWS environment demonstrated the potential for real-time coupling between energy market information and hydrological forecasting. By improving forecast reliability and linking hydrological and energy domains, the framework supports safer communities, more efficient hydropower operation, and balanced river basin management, advancing the environmental, social, and economic pillars of sustainability and contributing to SDGs 7, 11, and 13.