Sustainability, Vol. 16, Pages 11301: Cooperative Control of Distributed Drive Electric Vehicles for Handling, Stability, and Energy Efficiency, via ARS and DYC

Fecha de publicación: 23/12/2024
Fuente: Sustainability - Revista científica (MDPI)
Sustainability, Vol. 16, Pages 11301: Cooperative Control of Distributed Drive Electric Vehicles for Handling, Stability, and Energy Efficiency, via ARS and DYC
Sustainability doi: 10.3390/su162411301
Authors:
Ningyuan Guo
Jie Ye
Zihao Huang

Distributed drive electric vehicles (DDEV), characterized by their independently drivable wheels, offer significant advantages in terms of vehicle handling, stability, and energy efficiency. These attributes collectively contribute to enhancing driving safety and extending the all-electric range for sustainable transportation. Nonetheless, the challenge persists in designing a control strategy that effectively coordinates the objectives of handling, stability, and energy efficiency under both lateral and longitudinal driving conditions. To this end, this paper proposes a cooperative control strategy for DDEVs, incorporating active rear steering (ARS) and direct yaw moment control (DYC) to enhance handling capabilities, stability, and energy efficiency. A stability boundary is delineated using an analytical expression that correlates with the front wheel steering angle, and an adjustment factor is introduced to quantify vehicle stability based on this input parameter. This factor aids in establishing a coordinated control reference for handling and stability. At the upper-level motion control layer, a model predictive control method is developed to track this reference and implement ARS and DYC for superior performance. Specifically, the rear lateral force serves as the control command for ARS, which is converted into a rear wheel steering angle using a tire inverse model. Meanwhile, the front lateral force is modeled as linear-time-varying to simplify calculations. At the lower-level torque allocation layer, the adjustment factor is utilized to balance tire workload rate and in-wheel motors’ (IWM) energy consumption, enabling efficient switching between energy consumption and driving stability targets, and the torque allocation is conducted to acquire the expected IWMs’ command. Both the upper and lower-level optimization problems are formulated as convex problems, ensuring efficient and effective solutions. Simulations verify the effectiveness of this strategy in improving handling, stability, and energy economy under DLC cases, while maintaining high computational efficiency.