Fuente:
Polymers
Polymers, Vol. 18, Pages 354: Effect of Elevated Temperature Thermal Aging/Exposure on Shear Response of FRP Composites: A Topical Review
Polymers doi: 10.3390/polym18030354
Authors:
Rabina Acharya
Vistasp M. Karbhari
Fiber-reinforced polymer (FRP) composites are increasingly used in civil, marine, offshore, and energy infrastructure, where components routinely experience temperatures above ambient conditions. While the design of these components is largely driven by fiber-dominated characteristics, the deterioration of shear properties can lead to premature weakening and even failure. Thus, the performance and reliability of these systems depend intrinsically on the response of interlaminar shear characteristics, in-plane shear characteristics, and flexure-based shear characteristics to thermal loads ranging from uniform and monotonically increasing to cyclic and spike exposures. This paper presents a critical review of current knowledge of shear response in the presence of thermal exposure, with emphasis on temperature regimes that are below Tg in the vicinity of Tg and approaching Td. Results show that thermal exposures cause matrix softening and microcracking, interphase degradation, and thermally induced residual stress redistribution that significantly reduces shear-based performance. Cyclic and short-duration spike/flash exposures result in accelerated damage through thermal fatigue; steep thermal gradients, including through the thickness; and localized interfacial failure loading to the onset of delamination or interlayer separation. Aspects such as layup/ply orientation, fiber volume fraction, degree of cure, and the availability and permeation of oxygen through the thickness can have significant effects. The review identifies key contradictions and ambiguities, pinpoints and prioritizes areas of critically needed research, and emphasizes the need for the development of true mechanistic models capable of predicting changes in shear performance characteristics over a range of thermal loading regimes.