Polymers, Vol. 18, Pages 325: Synthesis and Characterization of Maguey (Agave cantala) Nano-Modified Bioplastic

Fuente: Polymers
Polymers, Vol. 18, Pages 325: Synthesis and Characterization of Maguey (Agave cantala) Nano-Modified Bioplastic
Polymers doi: 10.3390/polym18030325
Authors:
Kendra Felizimarie P. Magsico
Lorenz Inri C. Banabatac
Claudine A. Limos
Nolan C. Tolosa
Noel Peter B. Tan

The environmental threat posed by small, single-use sachets sourced from 48% annual waste from excessive packaging has been assessed by investigating the development of nano-incorporated bioplastic films from the high-yield plant, maguey (Agave cantala). Maguey cellulose was acetylated (using 10 and 15 mL of acetic anhydride for 16, 24, and 32 h), successfully yielding a high of 81.34% maguey cellulose acetate (MCA). MCA was confirmed to contain acetate groups (C=O, C-H, C-O) via FT-IR and exhibited a hydrophobicity of a 121.897° contact angle. Bioplastic films were fabricated using MCA solution combined with 15% (w/w) commercial cellulose acetate (CCA)/MCA and reinforced with nanoclay (NC) at 0.5%, 1%, and 3% (w/w) concentrations. Nanomaterial incorporation generally improved properties; however, mechanical strength declined with increasing NC concentration, recording tensile strengths of 2.01 MPa, 0.89 MPa, and 0.78 MPa for the 0.5%, 1%, and 3% NC films, respectively. Conversely, the 3% NC film showed the best barrier property, with a water vapor transmission rate (WVTR) of 31.14 g/m2 h. Surface morphology confirmed NC integration (nanomaterial sizes 29.74 nm to 107.3 nm), and the 0.5% NC film displayed the smooth structure ideal for sustainable packaging. The slight increase in contact angle observed between the 0% NC (60.768°) and 0.5 NC (62.904°) films suggested limitations in NC dispersion. Overall, the findings demonstrate the potential of using regenerated maguey cellulose acetate to create nano-bioplastic films with tailored mechanical and barrier properties for sustainable packaging, though optimization of NC loading and dispersion is necessary to maximize strength.