Fuente:
Polymers
Polymers, Vol. 17, Pages 3316: Computational Environmental Impact Assessment of an Enhanced PVC Production Process
Polymers doi: 10.3390/polym17243316
Authors:
Arelmys Bustamante Miranda
Segundo Rojas-Flores
Ángel Darío González-Delgado
Poly(vinyl chloride) (PVC) is one of the most widely used polymers due to its strength, low cost, and light weight. Industrial production is mainly conducted by suspension polymerization, which facilitates the control of the emissions of vinyl chloride monomer (VCM), a known carcinogen. However, the process consumes large amounts of water and energy and generates residual compounds such as polyvinyl alcohol (PVA) and polymerization initiators, which must be properly managed to mitigate environmental impacts. To improve sustainability, this study applied mass- and energy-integration strategies together with a zero-liquid-discharge (ZLD) water-regeneration system that uses sequential aerobic and anaerobic reactors to recirculate process water with reduced PVA. Although these measures reduce resource consumption, they can displace or intensify other impacts; therefore, a comprehensive evaluation of the system is necessary. Accordingly, the objective of this study is to quantify and compare the potential environmental impacts (PEIs) of the improved PVC production process through a scenario-based assessment using a waste reduction algorithm (WAR). This is applied to four operating scenarios in order to identify the stages and flows that contribute most to the environmental burden. According to our literature review, there is limited published evidence that simultaneously combines mass/energy integration and a ZLD system in PVC processes; thus, this work provides an integrated assessment useful for industrial design. The environmental performance of the improved process was evaluated using WAR GUI software (v 1.0.17, which quantifies PEIs in categories such as toxicity, climate change, and acidification. Four scenarios were compared: Case 1 (excluding both product and energy), Case 2 (product only), Case 3 (energy only), and Case 4 (product and energy). The total PEI increased from 2.46 PEI/day in Case 1 to 6230 PEI/day in Case 4, with the largest contributions from acidification (5140 PEI/day) and global warming (496 PEI/day), mainly due to natural gas consumption (5184 GJ/day). In contrast, Cases 1 and 2 showed negative PEI values (−3160 and −2660 PEI/day), indicating that converting the toxic VCM (LD50: 500 mg/kg; ATP: 26 mg/L) into PVC (LD50: 2000 mg/kg; ATP: 100 mg/L) can reduce the environmental burden in certain respects. In addition, the ZLD system contributed to maintaining low aquatic toxicity in Case 4 (90.70 PEI/day).