Fuente:
Polymers
Polymers, Vol. 17, Pages 3293: Influence of the Charge Stoichiometry on the Properties of Biopolymer Films Based on a Polyelectrolyte Complex of Chitosan and Carboxymethyl Starch
Polymers doi: 10.3390/polym17243293
Authors:
David Castro
Valentina Brovina
Mikhail Litvinov
Aleksandr Podshivalov
Lucía Castro
Diana Chamorro
Omar Oña
Adriana Tapia
Biopolymeric films based on chitosan and starch offer an ecological alternative for food protection. Nevertheless, their practical application is often limited by their low mechanical properties and high solubility in aqueous solutions, due to weak interactions between the chains of the biopolymers. One approach to resolve this problem is to obtain biopolymeric films based on (bio)polyelectrolyte complex ((bio)PEC). These films exhibit stronger electrostatic interactions and homogeneous biopolymeric structure. In this study, films based on (bio)PEC were obtained by the casting method, using chitosan and carboxymethyl cassava starch with different degrees of substitution with a biopolymer concentration of 2.5 wt.% at pH = 6. The obtained films were analyzed using the optical and scanning microscopy, color method, ATR-FTIR spectroscopy, thermogravimetry, mechanical analysis under tension, solubility in water, simulated gastric fluid (SGF), and phosphate-buffered saline (PBS) solutions, and contact angle of water. The results demonstrated that the tensile strength and Young’s modulus of films based on (bio)PEC increased by 2–4 times, and the elongation at break by 20% compared to films based on a mixture chitosan and starch. This is due to the increase in the attraction between oppositely charged polyelectrolytes in (bio)PEC films. Additionally, the solubility of (bio)PEC films was reduced by ~40%, 35% and 70% in water, SGF and PBS solutions, respectively, when the carboxymethyl starch with highest degree of substitution was used, and z was near to 1.