Fuente:
Polymers
Polymers, Vol. 17, Pages 3259: Synergetic Effect of Fullerene and Fullerenol/Carbon Nanotubes in Cellulose-Based Composites for Electromechanical and Thermoresistive Applications
Polymers doi: 10.3390/polym17243259
Authors:
Ane Martín-Ayerdi
Timur Tropin
Nikola Peřinka
José Luis Vilas-Vilela
Pedro Costa
Vasil M. Garamus
Dmytro Soloviov
Viktor Petrenko
Senentxu Lanceros-Méndez
A water-soluble hydroxypropyl cellulose (HPC) polymer matrix has been filled with different weight percentages (wt.%) of multiwalled carbon nanotubes (MWCNTs), fullerenes C60, fullerenols C60(OH)24, and their combinations. We study the potential of the 0D nanoparticles for improving electrical properties of the conductive MWCNT network in a biocompatible matrix. Physicochemical effects of fillers content, both individually and in combinations (MWCNTs/C60 and MWCNTs/C60(OH)24), for these composite systems, have been investigated. The performed SAXS analysis shows improved nanofiller dispersion for films with two fillers. The electrical percolation threshold (Pc) in MWCNTs composites occurs at ≈1.0 wt.%. A synergistic effect for binary filler composites on the electrical conductivity has been evaluated by keeping a constant amount of 0.5 wt.% MWCNTs (σ ≈ 3 × 10−9 S·m−1) and increasing the amount of C60 or C60(OH)24. A large increase in the electrical conductivity is obtained for the bifiller composites with 0.5 wt.% MWCNTs and 1.5 wt.% of C60(OH)24, reaching σ ≈ 0.008 S·m−1. Further, the sensing properties of 4.0/1.0 MWCNT/C60 nanocomposites were demonstrated by measuring both piezoresistive (PR) and thermoresistive (TR) responses. The combination of semiconductive fullerene/fullerenols combined with MWCNTs allows obtaining more homogeneous composites in comparison to single MWCNTs composites and also gives possibilities for tuning the electrical conductivity of the system. Overall, it is demonstrated that the use of bifillers with a water soluble biopolymeric matrix allows the development of eco-friendly high-performance electroactive materials for sustainable digitalization.