Fuente:
Polymers
Polymers, Vol. 17, Pages 3189: Layered Double Hydroxide Nanocomposite Coatings for Improved Flame Retardancy of Polyethylene-Based Copolymers
Polymers doi: 10.3390/polym17233189
Authors:
Trapani
Arrigo
Sisani
Bastianini
Frache
This work proposes a coating approach for obtaining flame-retardant ethylene–vinyl acetate (EVA) and ethylene–butyl acrylate (EBA) copolymer-based materials. Nanocomposite films of EVA and EBA were first produced by cast extrusion, with two types of layered double hydroxides (LDHs) differing in the aspect ratio used as nanofillers. Subsequently, the films were applied as a coating to the corresponding neat copolymer substrate, and the combustion behavior of the so-obtained samples was evaluated through cone calorimeter tests. Despite the small amount of nanofillers (0.5 wt.% considering the whole specimen), the application of the coatings significantly improved the time to ignition compared to the pristine copolymers, while the shape of the heat release rate curves and the relative peak values remained relatively unchanged. The effect of the embedded nanofillers in delaying the ignition was more effective for the EVA-based systems than for the EBA ones (showing an increment of 30% and 12%, respectively, compared to the uncoated samples), likely due to the more homogeneous dispersion of the LDHs obtained in the first case. The obtained results demonstrate the effectiveness of the coating approach, since it allows the flame-retardant action to be concentrated on the surface of a polymer system, where combustion specifically takes place, while minimizing the required amount of flame retardant.