Fuente:
Polymers
Polymers, Vol. 17, Pages 3133: Modulating Cell–Scaffold Interaction via dECM-Decorated Melt Electrowriting PCL Scaffolds
Polymers doi: 10.3390/polym17233133
Authors:
Wenchao Li
Xiang Gao
Peng Zhang
Aligned fibrous scaffolds are essential for directing soft-tissue regeneration, yet synthetic polymers lack native biochemical cues. To bridge this gap, bioactive and anisotropic scaffolds were developed by combining melt electrowriting (MEW) with decellularized extracellular matrix (dECM) decoration to enhance cell–scaffold interactions for soft tissue engineering. Porous polycaprolactone (PCL) scaffolds with aligned microfibers and tunable pore architectures (aspect ratios 1:1, 1:2, and 1:3) were fabricated via MEW and subsequently coated with porcine skeletal muscle dECM using a dip-gelation method. Comprehensive surface characterization confirmed the presence and robust adhesion of the dECM coating on the PCL scaffolds, which concurrently enhanced surface hydrophilicity. Furthermore, mechanical testing demonstrated that the resulting composite scaffold retained the structural integrity required to meet the mechanical demands of tissue regeneration. In vitro studies using L929 fibroblasts demonstrated that dECM decoration significantly improved cell adhesion, proliferation, and alignment along the fiber direction. Notably, scaffolds with 1:1 and 1:2 aspect ratios supported the highest cell density and guided morphological elongation most effectively. These findings highlight the synergistic potential of topographical cues and biochemical signaling in scaffold design for functional tissue regeneration.