The Potential of Low-Cost IoT-Enabled Agrometeorological Stations: A Systematic Review

Fuente: PubMed "smart farming"
Sensors (Basel). 2025 Oct 1;25(19):6020. doi: 10.3390/s25196020.ABSTRACTThe integration of Internet of Things (IoT) technologies in agriculture has facilitated real-time environmental monitoring, with low-cost IoT-enabled agrometeorological stations emerging as a valuable tool for climate-smart farming. This systematic review examines low-cost IoT-based weather stations by analyzing their hardware and software components and assessing their potential in comparison to conventional weather stations. It emphasizes their contribution to improving climate resilience, facilitating data-driven decision-making, and expanding access to weather data in resource-constrained environments. The analysis revealed widespread adoption of ESP32 microcontrollers, favored for its affordability and modularity, as well as increasing use of communication protocols like LoRa and Wi-Fi due to their balance of range, power efficiency, and scalability. Sensor integration largely focused on core parameters such as air temperature, relative humidity, soil moisture, and rainfall supporting climate-smart irrigation, disease risk modeling, and microclimate management. Studies highlighted the importance of usability and adaptability through modular hardware and open-source platforms. Additionally, scalability was demonstrated through community-level and multi-station deployments. Despite their promise, challenges persist regarding sensor calibration, data interoperability, and long-term field validation. Future research should explore the integration of edge computing, adaptive analytics, and standardization protocols to further enhance the reliability and functionality of IoT-enabled agrometeorological systems.PMID:41094843 | PMC:PMC12526549 | DOI:10.3390/s25196020