Fuente:
Foods - Revista científica (MDPI)
Foods, Vol. 14, Pages 4111: Multifunctional Metal–Organic Frameworks for Enhancing Food Safety and Quality: A Comprehensive Review
Foods doi: 10.3390/foods14234111
Authors:
Weina Jiang
Xue Zhou
Xuezhi Yuan
Liang Zhang
Xue Xiao
Jiangyu Zhu
Weiwei Cheng
Food safety and quality are paramount global concerns, with the complexities of the modern supply chain demanding advanced technologies for monitoring, preservation, and decontamination. Conventional methods often fall short due to limitations in speed, sensitivity, cost, and functionality. Metal–organic frameworks (MOFs), a class of crystalline porous materials, have emerged as a highly universal platform to address these challenges, owing to their unprecedented structural tunability, ultrahigh surface areas, and tailorable chemical functionalities. This comprehensive review details the state-of-the-art applications of multifunctional MOFs across the entire spectrum of food safety and quality enhancement. First, the review details the application of MOFs in advanced food analysis, covering their transformative roles as sorbents in sample preparation (e.g., solid-phase extraction and microextraction), as novel stationary phases in chromatography, and as the core components of highly sensitive sensing platforms, including luminescent, colorimetric, electrochemical, and SERS-based sensors for contaminant detection. Subsequently, the role of MOFs in food preservation and packaging is explored, highlighting their use in active packaging systems for ethylene scavenging and controlled antimicrobial release, in intelligent packaging for visual spoilage indication, and as functional fillers for enhancing the barrier properties of packaging materials. Furthermore, the review examines the direct application of MOFs in food processing for the selective adsorptive removal of contaminants from complex food matrices (such as oils and beverages) and as robust, recyclable heterogeneous catalysts. Finally, a critical discussion is presented on the significant challenges that impede widespread adoption. These include concerns regarding biocompatibility and toxicology, issues of long-term stability in complex food matrices, and the hurdles of achieving cost-effective, scalable synthesis. This review not only summarizes recent progress but also provides a forward-looking perspective on the interdisciplinary efforts required to translate these promising nanomaterials from laboratory research into practical, real-world solutions for a safer and higher-quality global food supply.