Sustainability, Vol. 16, Pages 10066: Experimental Investigation on the Permeability and Fine Particle Migration of Debris-Flow Deposits with Discontinuous Gradation: Implications for the Sustainable Development of Debris-Flow Fans in Jiangjia Ravine, China

Fecha de publicación: 19/11/2024
Fuente: Sustainability - Revista científica (MDPI)
Sustainability, Vol. 16, Pages 10066: Experimental Investigation on the Permeability and Fine Particle Migration of Debris-Flow Deposits with Discontinuous Gradation: Implications for the Sustainable Development of Debris-Flow Fans in Jiangjia Ravine, China
Sustainability doi: 10.3390/su162210066
Authors:
Pu Li
Kaiheng Hu
Jie Yu

The particle size distribution (PSD) is a crucial parameter used to characterize the material composition of debris-flow deposits which determines their hydraulic permeability, affecting the mobility of debris flows and, hence, the sustainable development of debris-flow fans. Three types of graded bedding structures—normal, reverse, and mixed graded bedding structures—are characterized by discontinuous gradation within a specific deposit thickness. A series of permeability tests were conducted to study the effects of bed sediment composition, particularly coarse grain sizes and fine particle contents, on the permeability and migration of fine particles in discontinuous debris-flow deposits. An increase in fine particles within the discontinuously graded bed sediment led to a power-law decrease in the average permeability coefficient. With fine particle contents of 10% and 15% in the bed sediments, the final permeability coefficient consistently exceeded the initial value. However, this trend reversed when the fine particle contents were increased to 20%, 25%, and 30%. Lower fine particle contents indicated enhanced permeability efficiency due to more interconnected voids within the coarse particle skeleton. Conversely, an increase in fine particle content reduced the permeability efficiency, as fine particles tended to aggregate at the lower section of the seepage channel. An increase in coarse particle size decreased the formation of flow channels at the coarse–fine particle interface, causing fine particles to move slowly along adjacent or clustered slow flow channels formed by fine particles, resulting in decreased permeability efficiency. Three formulae are proposed to calculate the permeability coefficients of discontinuously graded bed sediments, which may aid in understanding the initiation mechanism of channel deposits. Based on experimental studies and field investigations, it is proposed that achieving sustainable development of debris-flow fans requires a practical approach that integrates three key components: spatial land-use planning, in situ monitoring of debris flows and the environment, and land-use adjustment and management. This comprehensive and integrated approach is essential for effectively managing and mitigating the risks associated with debris flows, ensuring sustainable development in vulnerable areas.