Fuente:
Polymers
Polymers, Vol. 18, Pages 492: A Nano-Sized Poly(aniline-co-thiophene) Based Solid-Contact Screen-Printed Electrode for Batch and Continuous Potentiometric Determination of Iodide
Polymers doi: 10.3390/polym18040492
Authors:
Saad S. M. Hassan
Mahmoud Abdelwahab Fathy
Two approaches are described for construction of a screen-printed planar electrode (SPE) for potentiometric determination of iodide ion. The first, involves preparation and application of iron(II) bathophenanthroline tetraiodoplumbate complex ([Fe(bphen)3][PbI4]), as a sensitive and selective electroactive sensing material in a potentiometric electrode for iodide determination. The second is the use of a nano-sized poly(aniline-co-thiophene) (PANI-co-PT) as a solid-contact material in a planar miniaturized configuration. The SPE displays a Nernstian response for iodide ion with a calibration slope of −58.81 ± 0.69 mV/decade (R2 = 0.9998) over a wide concentration range (9.17 × 10−7–6.94 × 10−3 mol/L), low detection limit (6.09 × 10−7 mol/L), rapid response time (5.0 ± 1.0 s) and long-life span (75 ± 3.0 d). The use of PANI-co-PT solid-contact layer significantly improves the ion-to-electron transduction, eliminates the formation of undesired thin water layer between the sensing membrane and the conducting substrate, prevents membrane delamination, enhances potential stability with a significantly reduced potential drift (8.32 ± 0.12 µV/min) and displays high redox capacitance (2.560 ± 0.040 mF). Water contact angle measurements confirm the increased hydrophobicity of the modified membrane electrode (from 44 ± 0.8° to 93 ± 1.4°) and demonstrate the membrane ability to repel moisture and further stabilize the sensor response. The proposed sensor is successfully integrated into a flow injection analysis (FIA) system to enable real-time and continuous iodide monitoring with high precision, high sample throughput and applicability for quality control of pharmaceuticals and environmental monitoring.