Spatial difference of carbon budget and carbon balance zoning based on land use change: a case study of Henan Province, China

Fecha de publicación: 28/09/2023
Fuente: PubMed "Ecological production"
Environ Sci Pollut Res Int. 2023 Oct;30(50):109145-109161. doi: 10.1007/s11356-023-29915-6. Epub 2023 Sep 28.ABSTRACTLand use change is one of the key reasons for the rise in global carbon emissions. Incorporating practical methods for carbon governance into the major strategic decisions of countries around the world is important for controlling carbon emissions. This study aims to carry out a regional land use carbon budget assessment and build a carbon balance zoning optimization framework. As a result, China will be better able to implement low-carbon strategies and reach carbon peaking and carbon neutrality. Using the data of land use and energy consumption for Henan Province from 2000 to 2020, a carbon budget assessment system was constructed. According to the analysis of the geographical distribution of carbon budget, an evaluation system was developed and a carbon balance partition was established from the natural, economic, ecological and resource structure. A regionally differentiated development strategy was proposed. The findings revealed that: (1) Land use carbon emissions of Henan Province reflected a significant increasing trend, while the variation in carbon absorption of land use was stable. Carbon emissions increased by 87,120.25×104 t in 2020 compared to 2000, but the carbon absorption remained at approximately 1735×104 t over the years and there was an overall state of carbon deficit. (2) The geographical distribution of carbon emissions in Henan Province was characterized by higher in the central part and lower in the surroundings, and the distribution of carbon absorption was higher in the west and lower in the east. The distribution pattern was closely related to the level of land use and the structure of energy consumption. (3) From the carbon balance analysis, the 158 counties in Henan Province were divided into four carbon balance functional areas, namely the carbon sink functional area, low-carbon development area, carbon intensity control area, and high-carbon optimization area. Different optimized development strategies were proposed for each functional area.PMID:37770737 | DOI:10.1007/s11356-023-29915-6