Microorganisms, Vol. 12, Pages 2122: The Process of Soil Carbon Sequestration in Different Ecological Zones of Qingtu Lake in the Arid–Semi-Arid Region of Western China

Fecha de publicación: 23/10/2024
Fuente: Microorganisms - Revista científica (MDPI)
Microorganisms, Vol. 12, Pages 2122: The Process of Soil Carbon Sequestration in Different Ecological Zones of Qingtu Lake in the Arid–Semi-Arid Region of Western China
Microorganisms doi: 10.3390/microorganisms12112122
Authors:
Tao Wang
Shengyin Zhang
Shuncun Zhang
Ming Shao
Zhaoyun Ding
Yanfang Zhou
Cuicui Su

As a vital component of the global carbon pool, soils in arid and semi-arid regions play a significant role in carbon sequestration. In the context of global warming, increasing temperatures and moisture levels promote the transformation of barren land into wetlands, enhancing carbon sinks. However, the overdevelopment of oases and excessive extraction of groundwater lead to the opposite effect, reducing carbon sequestration. This study examines two soil types—meadow soil (MS) and swamp soil (SS)—from Qingtu Lake, an arid lake in western China. It analyzes the sources of soil inorganic carbon, the composition and origin of dissolved organic matter (DOM), and the relationships between microbes, soil organic carbon (SOC), soil inorganic carbon (SIC), mineral composition, and soil texture. The results indicate that inorganic carbon in the study area consists of both primary carbonate minerals and secondary pedogenic carbonates. The DOM primarily consists of two components, both identified as terrestrial humic substances. In meadow soils, bacterial activity drives the weathering of plagioclase, which releases Ca2+ necessary for the formation of pedogenic carbonates. Plagioclase also provides colonization sites for microbes and, along with microbial activity, participates in the soil carbon cycle. Within the soil community, bacteria appear to play a more critical role than fungi. In contrast, microbial contributions to the carbon cycle in swamp soils are weaker, with minerals predominantly interacting with organic carbon to form mineral-associated organic matter, thus promoting the soil carbon cycle. These findings have important implications for understanding soil carbon sinks under different micro-ecological conditions in arid and semi-arid regions. Through targeted human intervention, it is possible to enhance carbon sequestration in these areas, contributing to the mitigation of global climate change.