Foods, Vol. 14, Pages 321: Detection of Adulteration of Extra Virgin Olive Oil via Laser-Induced Breakdown Spectroscopy and Ultraviolet-Visible-Near-Infrared Absorption Spectroscopy: A Comparative Study

Fecha de publicación: 18/01/2025
Fuente: Foods - Revista científica (MDPI)
Foods, Vol. 14, Pages 321: Detection of Adulteration of Extra Virgin Olive Oil via Laser-Induced Breakdown Spectroscopy and Ultraviolet-Visible-Near-Infrared Absorption Spectroscopy: A Comparative Study
Foods doi: 10.3390/foods14020321
Authors:
Eleni Nanou
Marios Bekogianni
Theodoros Stamatoukos
Stelios Couris

The fast detection of Extra Virgin Olive Oil (EVOO) adulteration with poorer quality and lower price vegetable oils is important for the protection of consumers and the market of olive oil from fraudulent activities, the latter exhibiting an increasing trend worldwide during the last few years. In this work, two optical spectroscopic techniques, namely, Laser-Induced Breakdown Spectroscopy (LIBS) and UV-Vis-NIR absorption spectroscopy, are employed and are assessed for EVOO adulteration detection, using the same set of olive oil samples. In total, 184 samples were studied, including 40 EVOOs and 144 binary mixtures with pomace, soybean, corn, and sunflower oils, at various concentrations (ranging from 10 to 90% w/w). The emission data from LIBS, related to the elemental composition of the samples, and the UV-Vis-NIR absorption spectra, related to the organic ingredients content, are analyzed, both separately and combined (i.e., fused), by Linear Discriminant Analysis (LDA), Support Vector Machines (SVMs), and Logistic Regression (LR). In all cases, very highly predictive accuracies were achieved, attaining, in some cases, 100%. The present results demonstrate the potential of both techniques for efficient and accurate olive oil authentication issues, with the LIBS technique being better suited as it can operate much faster.