Fuente:
Molecules - Revista científica (MDPI)
Molecules, Vol. 31, Pages 642: Research on Low-Damage CO2 Foam Flooding System: Review and Outlook
Molecules doi: 10.3390/molecules31040642
Authors:
Jierui Liu
Zhen Cui
Shisheng Liang
Xinyuan Zou
Wenli Luo
Wenjuan Wang
Bo Dong
Xiaohu Xue
Tight oil reservoirs are widely recognized as a critical successor in global unconventional energy development and are generally characterized by distinct geological features, including fine pore throats, pronounced heterogeneity, and a high concentration of clay minerals (e.g., montmorillonite and mixed-layer illite/smectite). Severe hydration, swelling, and fines migration are readily induced during water injection or conventional water-based fluid operations, thereby resulting in irreversible impairment of reservoir permeability. Despite the excellent injectivity and capacity for viscosity reduction associated with CO2 flooding, sweep efficiency is severely compromised by viscous fingering and gas channeling, which are induced by the inherent low viscosity of the gas. While CO2 foam technology is widely acknowledged as a pivotal solution for addressing mobility control challenges, its implementation is hindered by a primary technical bottleneck: the incompatibility between traditional water-based foam systems and strongly water-sensitive reservoirs. A dual challenge comprising water injectivity constraints and gas channeling is presented by strongly water-sensitive tight oil reservoirs. To address these impediments, three emerging low-damage CO2 foam systems are critically evaluated in this review. First, the synergistic mechanisms of novel quaternary ammonium salts and polymers in inhibiting clay hydration and enhancing foam stability within modified water-based systems are elucidated. Next, the physical isolation strategy of substituting the water phase with a non-aqueous phase (oil/organic solvent) in organic emulsion systems is analyzed, highlighting advantages in wettability alteration and the mitigation of water blocking. Finally, the prospect of waterless operations using CO2-soluble foam systems—wherein supercritical CO2 is utilized as a surfactant carrier to generate foam or viscosify fluids via in situ formation water—is discussed. It is revealed by comparative analysis that: (1) Modified water-based systems are identified as the most economically viable option for reservoirs with moderate water sensitivity, wherein cationic stabilizers are utilized to inhibit hydration; (2) Superior wettability alteration and the elimination of aqueous phase damage are provided by organic emulsion systems, rendering them ideal for ultra-sensitive, high-value reservoirs, despite higher solvent costs; (3) CO2-soluble systems are recognized as the future direction for “waterless” flooding, specifically tailored for ultra-tight formations (<0.1 mD) where injectivity is critical. Current challenges, such as surfactant solubility, high-temperature stability, and cost control, are identified through a comparative analysis of these three systems with respect to structure-activity relationships, rheological properties, damage control capabilities, and economic feasibility. What is more, an outlook is provided on the molecular design of future environmentally sustainable, cost-effective CO2-philic materials and smart injection strategies. Consequently, theoretical foundations and technical support are established for the efficient exploitation of strongly water-sensitive tight oil reservoirs. By bridging the gap between reservoir damage control and mobility enhancement, this study identifies viable strategies for enhanced oil recovery. Crucially, it supports carbon neutrality and sustainable energy targets via CCUS integration.