Molecules, Vol. 29, Pages 5089: Thermodynamic Assessment of the Pyrazinamide Dissolution Process in Some Organic Solvents

Fecha de publicación: 28/10/2024
Fuente: Molecules - Revista científica (MDPI)
Molecules, Vol. 29, Pages 5089: Thermodynamic Assessment of the Pyrazinamide Dissolution Process in Some Organic Solvents
Molecules doi: 10.3390/molecules29215089
Authors:
Jesus Tovar-Amézquita
Cristian Rincón-Guio
Francy Elaine Torres-Suarez
Magda Melissa Florez
Claudia Patricia Ortiz
Fleming Martinez
Daniel Ricardo Delgado

Pyrazinamide is a first line drug used for the treatment of tuberculosis, a pathology that caused the death of more than 1.3 million people in the world during 2022, according to WHO, being a drug of current interest due to its relevance in pharmaceutical and medical sciences. In this context, solubility is one of the most important physicochemical parameters in the development and/or optimization of new pharmaceutical forms, so the present work aims to present a thermodynamic study of the solubility of pyrazinamide in nine organic solvents of pharmaceutical interest. Using the shake-flask method and UV/Vis spectrophotometry, the solubility of this drug was determined at 9 temperatures; the maximum solubility was obtained in dimethyl sulfoxide at 318.15 K (x2=0.0816±0.004) and the minimum in cyclohexane at 283.15 K (1.73±0.05×10−5). From the apparent solubility data, the thermodynamic functions of solution and mixing were calculated, indicating an endothermic process. In addition, the solubility parameter of pyrazinamide was calculated using the Hoftyzer-van Krevelen (32.90 MPa1/2) and Bustamante (28.14 MPa1/2) methods. The maximum solubility was reached in dimethyl sulfoxide and the minimum in cyclohexane. As for the thermodynamic functions, the entropy drives the solution process in all cases. In relation to the solubility parameter, it can be analyzed that the mathematical models offer approximations; however, the experimental data are still primordial at the time of inferring any process.