Fuente:
Polymers
Polymers, Vol. 18, Pages 496: A Kinetic Study of the Autoxidative Formation of VOCs, Including Formaldehyde, Acetaldehyde and Acrolein from Polyurethane Soft Foams
Polymers doi: 10.3390/polym18040496
Authors:
Christian Stefan Sandten
Martin Kreyenschmidt
Rolf Albach
The oxidation of flexible polyurethane (PUR) foams significantly impacts product durability, vehicle indoor air quality, and volatile organic compound (VOC) emissions. This study investigates oxidation kinetics and VOC emissions (65–155 °C) from foams with indices between 70 and 115 (molar ratio of NCO to NCO-reactive groups × 100), where a higher index represents greater hard segment (methylene diphenyl diisocyanate) and lower soft segment (polyether polyol) content. Using a flow-through setup with PTFE chambers and Tenax thermodesorption tubes and dinitrophenylhydrazine (DNPH) cartridges, VOCs from initial analyte loading, hydroperoxide degradation, and autoxidation were distinguished, providing robust kinetic data unaffected by diffusion interference. A higher index accelerated soft segment degradation, increasing oxidation rates and VOC emissions. The activation energy of 1,2-propanediol-1-acetate-2-formate increased from 87 kJ/mol in low-index to 108 kJ/mol in high-index formulations. VOC emissions from high-index foams were tripled for acetaldehyde during long-term aging at 65 °C. While most emissions followed Arrhenius behavior, formaldehyde and acrolein deviated above 100 °C, with higher hard-segment content extending their Arrhenius range. These findings link PUR composition to degradation behavior and emissions, enabling formulation improvements. The results advance methods for evaluating raw material contributions and the performance of antioxidants under realistic aging conditions.