Fuente:
Sustainability - Revista científica (MDPI)
Sustainability, Vol. 18, Pages 697: Sustainable Optimal LQR-Based Power Control of Hydroelectric Unit Regulation Systems via an Improved Salp Swarm Algorithm
Sustainability doi: 10.3390/su18020697
Authors:
Yang Liu
Chuanfu Zhang
Haichen Liu
Xifeng Li
Yidong Zou
To enhance the sustainable power regulation capability of hydroelectric unit regulation systems (HURS) under modern power system requirements, this paper proposes an optimal linear quadratic regulator (LQR)-based power control strategy optimized using an improved Salp Swarm Algorithm (ISSA). First, comprehensive mathematical models of the hydraulic, mechanical, and electrical subsystems of HURS are established, enabling a unified state-space representation suitable for LQR controller design. Then, the weighting matrices of the LQR controller are optimally tuned via ISSA using a hybrid objective function that jointly considers dynamic response performance and control effort, thereby contributing to improved energy efficiency and long-term operational sustainability. A large-scale hydropower unit operating under weakly stable conditions is selected as a case study. Simulation results demonstrate that, compared with conventional LQR tuning approaches, the proposed ISSA-LQR controller achieves faster power response, reduced overshoot, and enhanced robustness against operating condition variations. These improvements effectively reduce unnecessary control actions and mechanical stress, supporting the reliable and sustainable operation of hydroelectric units. Overall, the proposed method provides a practical and effective solution for improving power regulation performance in hydropower plants, thereby enhancing their capability to support renewable energy integration and contribute to the sustainable development of modern power systems.