Revisiting motif finding: do bi-objective metaheuristics surpass single-objective metaheuristics?

Fuente: PubMed "bee"
BMC Bioinformatics. 2025 Nov 27. doi: 10.1186/s12859-025-06327-6. Online ahead of print.ABSTRACTBACKGROUND: The discovery of DNA motifs is essential for studying gene expression and function in many biological systems. Most existing algorithms for motif detection rely on a single optimization criterion or objective function. This study formulates motif finding as a bi-objective optimization problem and investigates whether multi-objective metaheuristics offer potential advantages over single-objective approaches.RESULTS: We developed four variants of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) incorporating simple, problem-specific genetic operators. Experiments on six benchmark datasets from three organisms demonstrate that our bi-objective approach significantly outperforms the state-of-the-art Artificial Bee Colony (ABC) metaheuristic. Remarkably, NSGA-II-PMC achieved superior performance over ABC using 6 times fewer fitness evaluations, highlighting its computational efficiency. The synergistic combination of problem-specific operators proved essential, with individual operators showing limited effectiveness compared to their joint application.CONCLUSIONS: Our findings question the common belief that single-objective metaheuristics are better suited for combinatorial problems like motif finding. The bi-objective formulation helps maintain diversity and avoid premature convergence, even with partially correlated objectives, resulting in better solutions than those obtained through dedicated single-objective optimization. Simple, interpretable problem-specific adaptations can yield substantial performance gains over sophisticated alternatives. These results suggest that bi-objective approaches may provide more robust and computationally efficient solutions for DNA motif discovery, opening new research directions in bioinformatics.PMID:41310477 | DOI:10.1186/s12859-025-06327-6