Low-Temperature Stress-Induced Changes in Cucumber Plants-A Near-Infrared Spectroscopy and Aquaphotomics Approach for Investigation

Fuente: PubMed "medicinal and aromatic plants"
Sensors (Basel). 2025 Dec 15;25(24):7602. doi: 10.3390/s25247602.ABSTRACTLow temperatures have a significant impact on the growth, development, and productivity of cucumber plants. The potential of near-infrared spectroscopy and the aquaphotomics approach for investigating chilling stress was studied in Voreas F1 and Gergana cultivars. Changes in the spectral patterns of cucumber plants were compared with physiological and metabolic data. Voreas plants were unable to survive seven days of low-temperature stress due to a drastic increase in electrolyte leakage and a decrease in the net photosynthesis rate, stomatal conductance, and transpiration rate. Gergana plants survived chilling by preserving cell membrane integrity and photosynthesis efficiency. During chilling treatment, the content of most metabolites in both cultivars was reduced compared to the controls, yet it was much more pronounced in Voreas. We observed an increased accumulation of cinnamic acid on the seventh day only in the Gergana cultivar. A MicroNIR spectrometer was used for in vivo spectral measurements of cotyledons and the first two leaves. Differences in absorption spectra were observed among control, stressed, and recovered plants, across different days of stress, and between the studied cultivars. The most significant differences were in the 1300-1600 nm range, much smaller for Gergana than Voreas. Aquagrams of the two cultivars also reveal differences in their responses to low temperatures and changes in water molecular structure in the leaves. The errors of prediction for the days of chilling by using PLS models were from 0.96 to 1.14 days for independent validation, depending on the spectral data of different leaves used. Near-infrared spectroscopy and aquaphotomics can be used as additional tools for early detection of stress and investigation of low-temperature tolerance in cucumber cultivars.PMID:41471597 | PMC:PMC12736927 | DOI:10.3390/s25247602