MULTIPATH MITIGATION IN GNSS RECEIVERS WITH MACHINE LEARNING MODELS
Machine learning techniques are used, in one embodiment, to mitigate multipath in an L5 GNSS receiver. In one embodiment, training data is generated to provide ground truth data for excess path length (EPL) corrections for a set of received GNSS signals. A system extracts features from the set of received GNSS signals and uses the extracted features and the ground truth data to train a set of one or more neural networks that can produce EPL corrections for pseudorange measurements. The trained set of one or more neural networks can be deployed in GNSS receivers and used in the GNSS receivers to correct pseudorange measurements using EPL corrections provided by the trained set of neural networks.
Al elegir "Aceptar todas las cookies", acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y analizar el uso del sitio web. Al hacer clic en "Ajuste sus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no pueden ser rechazadas
Configuración de cookies
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarios por razones técnicas. Sin ellos, es posible que este sitio web no funcione correctamente.
Son necesarios para una funcionalidad específica en el sitio web. Sin ellos, algunas funciones pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante
Permítanos personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web