Microorganisms, Vol. 12, Pages 2396: Regulation of Isoleucine on Colonic Barrier Function in Rotavirus-Infected Weanling Piglets and Analysis of Gut Microbiota and Metabolomics

Fecha de publicación: 22/11/2024
Fuente: Microorganisms - Revista científica (MDPI)
Microorganisms, Vol. 12, Pages 2396: Regulation of Isoleucine on Colonic Barrier Function in Rotavirus-Infected Weanling Piglets and Analysis of Gut Microbiota and Metabolomics
Microorganisms doi: 10.3390/microorganisms12122396
Authors:
Changsheng Jiang
Weiying Chen
Yanan Yang
Xiaojin Li
Mengmeng Jin
Ahmed H. Ghonaim
Shenghe Li
Man Ren

Rotavirus (RV) is a significant contributor to diarrhea in both young children and animals, especially in piglets, resulting in considerable economic impacts on the global pig industry. Isoleucine (Ile), a branched-chain amino acid, is crucial for regulating nutrient metabolism and has been found to help mitigate diarrhea. This study aimed to assess the impact of isoleucine supplementation in feed on colonic barrier function, colonic microbiota, and metabolism in RV-infected weanling piglets. A total of thirty-two weaned piglets, aged 21 days, were randomly assigned to two dietary groups (each further divided into two subgroups, with eight replicates in each subgroup), receiving diets with either 0% or 1% isoleucine for a duration of 14 days. One group from each treatment was then challenged with RV, and the experimental period lasted for 19 days. The results showed that dietary Ile significantly increased the secretion of IL-4, IL-10, and sIgA in the colon of RV-infected weanling piglets (p < 0.05). In addition, Ile supplementation notably increased the expression of tight junction proteins, including Claudin-3, Occludin, and ZO-1 (p < 0.01), as well as the mucin protein MUC-1 in the colon of RV-infected weanling piglets (p < 0.05). Gut microbiota analysis revealed that dietary Ile increased the relative abundance of Prevotella and decreased the relative abundance of Rikenellaceae in the colons of RV-infected weanling piglets. Compared with the RV+CON, metabolic pathways in the RV+ILE group were significantly enriched in vitamin digestion and absorption, steroid biosynthesis, purine metabolism, pantothenate and CoA biosynthesis, cutin, suberine, and wax biosynthesis, as well as fatty acid biosynthesis, and unsaturated fatty acid biosynthesis. In conclusion, dietary Ile supplementation can improve immunity, colonic barrier function, colonic microbiota, and colonic metabolism of RV-infected weaned piglets. These findings provide valuable insights into the role of isoleucine in the prevention and control of RV.